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A discussion is first given of the general problem of the flow 
of. gas in a gun, of the simplified problem known as the Lagrange 
problem, and of the Pidduck-Kent special solution of the differential 
equation of the Lagrange problem. This special solution is commonly 
supposed to be the limiting solution of the latter. An improved 
derivation is then given of the Pidduck-Kent solution, the improve- 
ment consist3ng in accounting for gas imperfection by means of a 
covolume correction, 

The Pidduck-Kent solution is then put into a form suitable for 
easy calculation. To summarize the results, let the following sym- 
bols denote certain quantities as calculated from,the ,Pidduck-Kent 
solution, viz 

PO = breech pressure 

pb = pwssure ,at the base of the ,proiectile 
P = space-mean pressure 
Wp = kinetic energy of the projectile 

wC 
= kinetic energy of the powder 

Then, according to the Pidduck-Kent solution, 

$ 
-* Yg= I tt/s 

L:'.& fi WP 

pb 
(I - I&,)- 

2nt3 + 2(n+O 
k= T 7 

where 6 denotes the charge-projectile mass ratio C/CII,nthe polytropic 
indexI/(v-I), (where 8 is the effective ratio of specific heats that 
takes heat loss into account), and a0 a parameter ch%rac%ristic of the 
Pidduck-Kent solution, 

The quantity 6 is given by 

~sz;+&+~n(z$q 
The quantity ti, depending only on e , may be found by linear inter- 
polation in Table I of Appendix A, The quantityfl, also depending 
on&on 6 s- may be found by linear interpolation in Table IL of 
Appendix A. The quantity C 

f 
, depending weakly on both 45 and n , may 

be found by two-way linear nterpolation in Table III of Appendix A 
or by reading from the graphs or the contour map in Appendix H. Ordinarily 
reading from the graphs is the easiest and most accurate of the three 
methods of finding cr. With these aids one may expect to obtain Pidduck- 
Kent values (as distlnguished of.course from true values) with the follow- 
ing maximum errors for the range E = 0 to 10, Y = 1.2 to 3: 
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S,acfion I. Elementary Corre'ctions for the Motion of the Powder Gas 

In cases where b-1 the initial mass :b of the powder 
%b small compared' to the mass m of the projectile, it is customary 
to correct for the motion of the powder gas by means'of certain 
very simple formulas. These are; 

J%=p,W~~) 

j3 ‘p,(I+e/3) 

(1) 

(2) 

,! 

* 

. 
and p, denotes the pressure at the breech, pb the pressure at the 
base, of the projectile, 3 the spa,ce-~mean,pressure 
jeotile, v the velocity of the projectile, and WC 

behind the pro- 
the kinetic 

(31 

(4) 

energy of the powder plus powder gas. These formulas are derived 
on the assumptions that the cross-sectionalarea is uniform all 
the way from the breech to the .base. .of...Lhe. projectiie and that the 
poWer grains and powder gas togethe.r form,a fluid of uniform density. 
lJn&.&..thes.e... conditions the velocity of this fluid varies linearly. 
ff?ord the value zero at the breech to the value V at the base of the 
pPoJ&Xlle. The correction for the kinetic energy of the charge, 
v%Z Wdition of one-third the mass of the charge to that of the pro- 

i 
ectile, is then similar to. that f-or the kinetic energy of a spring 
tiithout waves) to which a bob is attached. 

6wti.m II. The General Pro'blem-of' the Motion of -the lioK;der. 

Actually the problem is somewhat more complicated than the 
simple theory would indicate. Gas friction is not taken into I. + adro3,ant at all in the above formulas for the pressure ratios. 
Chafibrage, the drop in cross-sectional area on going from the* 

' . powder chamber to the bore, introduces a non-uniformity in.to the 
cross-sectional area, a non-uniformity which will probably bedome 
tiuch more serious 
higher velocity. 

as one goes in the direction of guns of much 
The powder gas is compressible, so that there 

actually must be a variation of density -with position as well as 
time* It is not really correct to lump the powder grains and the 
powder, gas together as a single f'luid, Finally, the burning of the 
powder furnishes energy to the gas, so that the expansion is not 
adiabatic. 
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Section III. The Lagrange Problem. 

When Lagrange set himself the problem of.solving for the 
motion of the powder gas in a gun; he was able to formulate it. 
in a relatively simple fashion, because the propellant of his 
day was sim&l~.loose bldck powder. in such a case it is not 
too bad to as.sitme.instantaneous combustion. He therefore assumed 
that he.had..a cylinder,. closed at one end by the breech and at 
.the other,,. v&.ia.bl.e,.. end by the base of the. projectile and filled 
initially withhotgas of uniform pressure, density, and tempera-, 
ture. . ..His problem.was then to calculate the subsequent states 
of the system, the projectile being initially at rest. 

Lagrang,e'.s...pr~blem has received its most complete treatment 
by Love and.P.idduck*, who applied their results to the calcula- .. 
tion of p /p, .add W /W versus travel for the case of a 150 mm. 
gun* (W 'de&otes t& ?kinetic energy of the projectile.) Pidduck 
found th$t..these....ratios oscillated but seemed to approach certain 
limiting values, whiohvalues corresponded to a certain special 
solution.of:the differential equation of motion of the gas. The 
rigorouszolution is of a wave chara-cter; involving'z9refaction 
waves travalltig..back x&forth between breech and projectile, 
and satisfiss*.the....initial conditions of the Lagrange problem. The 
special solution, on the other hand, is of a non-wave char,acter 
and does not satisfy the initial conditions of the Lagrange pro- 
blem, but corresponds to an initial non-uniform distribution of 
pressure and density. From observation of the computational 
results for p,/pb Pidduck and all later investigators have sus- 
pected but not proved that the accurate solution approaches the 
special solution in the limit of large travel. 

Solution IV. The Pidduck-Kent Special Solution. 

The special solution has also been derived by Kent** and 
applied by Hirschfelder et al**+ to the computation of the ratios 
VP, andW,/Wp. ln the limiting case of sufficiently small 
values of E the Pidduck-Kent special solution gives values for 
the above radios that agree with the uniform-density values of 
equations (2) and (3). The deviations from the uniform-density 
values .become important in the case of large valueSof E , i.e., 
for high-velocity guns. As we have said above, the effect of gas 

*Lo&e .&d.Pidduck, Phil. Trans. Roy. Sot. 222, 
**R.H. Kent, Physics 1, 319 (1936) 

167 (1922) 

***Hirschfelder, Kershner, and Curtiss, NDRC Report A-142 
Birschfelder, Kershner, and Sherman, NDRC Report A-204 
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friction also becomes more important for high velocities, as does 
the effect of chambrage. The latter becomes more important because 
the use of a highc/mratio necessitates the use of a powder chamber 
much fatter than the bore. For small values of E, for which the 
assumption of uniform density may be made, the effect of chambrage 
may be estimated by the methods of BRL Reports No. aO?++ and No. 3**. 
For large values of E it is doubtful that those methods would apply, 

Although the solution of the hydrodynamical problem thus in- 
volves a number of complications when we go to large values of E, 
it appears worth while to isolate the effect of non-uniformity of 
gas density by publishing-adequate tables of the Pidduck-Kent special 
solution. These tables may not eventually be useful for practical 
calculations, but they should be of considerable help in the analysis 
of experimental results on high-velocity guns, if only to tell us, by 
comparison of measured pressure distributions with the Pidduck-Kent 
solution, how important are the neglected factors. 

Section V. An Improved Derivation of the Pidduck-Kent Special Solution 

In the Lagrange problem, of which this is a special solution of 
the corresponding differential equation*H, it is assumed that the 
chamber and bore form-a cylinder of uniform cross-section, the powder 
being all burned initially. We follow the notation of Kent in the 
above-mentioned paper. I 

Thus 
XE initial distance of any gas particle from the breech 

Y f distance at time t of the same gas particle from the breech 

p z density of the gas 

P z pressure of the gas 

The subscript zero denotes initial values. A subscript.on a 
partial derivative denotes the variable which is kept constant in 
the differentiation. The equation of continuity is then 

(5) 

*J.P. Vinti, BRL Report N0.30?,~ "The'Equations of interior 
ballistics", Chap. IV. 

**N.F. Ramsey, Jr. (with J.R. Lane), BRL Report No. 3, reanalysis of 
Pressure-Time Curves for the Gerlich R-ifle” 

***It is not a solution of the actual Lagrange problem, because the 
initial conditions are not satisfied. 



The equation of motion is 

The equation of the state of the gas is 

p(;-‘J) = R,T 17) 

where 
z 

denotes the specific covolume of the powder gas, T the 
absolu e temperature, and Rl the gas constant per unit mass. If 

denotes the ratio of specific heats of the gas, the equation of 
an adiabatic is I 

(3) 

Kent further assumes that "the original pressure and density dis- 
tribution follows adiabatically from an antecedent regime of 
uniform pressure and density." Under these circumstances (9) 
becomes 

The derivation follows through.equally well if we replace the 
true 'b/' by a larger effective va1ue.r for the ratio of specific 
heats, a device that affords a means of taking heat loss into 
account.* Furthermore it is not necessary to take the right 
side of (10) to be a constant; it suffices for the following 
derivation to take it as(/o(j,f(t)),** where y(t) is a function 
of .time alone, Kent sugges s that-by such a means one can 
allow partially for the burning of the powder, It is doubtful, 
however, that any such simple art%fice will be of use in 
attempting to treat the case where the powder is still burning. 
Indeed the continuity equation. (5) and.the dynamical equation 
(6) do not hold in that case, unless the density p be taken as 
the density of a "fluid" composed of powder gas and solid powder 
together, in which case the above relations between pressure and 
density do not hold. 

* See J. P. Vinti, BRL Report No. 307, rrThe Equations of 
Interior Ballisticsfl 
J. P. Vinti, BRL Report No. 402, "Project for a New Table 
for Interior Ballistics for Multiperforated Powder.11 
J. P. Vinti and Jack Chernick, BRI; Report No. 625, Vnterior 
Ballistics for Poweer of Constant Burning Surface.l 

**Suggested by Kent, lot. cit. 

- :i . 

= ,, " . . 
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The derivation of the special solution for an imperfect gas 
has been given partially by Kent, who showed that the solution is 
the same as that for a perfect.gas through powers of E E c/m as 
high as the third. In this section we show that this restriction 
can be removed, the formulas obtained being entirely independent 
of the value of lj o Pidduck* has outlined a proof, -but we believe 
it desirable to put the complete derivation on record. 

Following Kent, we introduce the variable 

and attempt to find a special solution of (6) in the form 

, 

AT t = o we have y = x so that 

From (12) it is clear that'either f or 4 may contain an arbitrary 
factor, so that we are free to choose the function + in such a way 
that $(o) = 1. Then 

Introducing the new variable 

* F. B. Pidduck, Journal of Applied Physics 8, 144 (1937) 



-1 
-I 1) 

we have 

where fr is short for fl(X)0 

(lb) 
Y-1 

i 

Now 

so that 

Using the continuity equation (51, we then find 

On writing and using (18), we find 

- I  
.  

.  



. ,: (22) 

,I.’ 

FROM (123, (?.I), ANO (22) 



Let x denote the initial distance from the breech to the base 
of the pro ectile, P A the uniform cross-sectional area, and abbre- 
viate f(x ) by f . Then, using the fact that when the powder 
all burne 8 the t&al mass of the gas is equal to the original 

iS 
:< 

powder mass c, we have 

If we now use (26) and (28), introduce the dwmny variable 
defined by f =p fb, and use the abbreviations P 

d P 
we find 

At the base zf the projectile we have from (12) and (22) 
($$ = f,qJW 

pb = Kv;b"cf,)$+Jd+~ 

‘(29) =+ 

(30) 

(31) l 

(32) 

(33) 
If m denotes the mass of the projectile (increased perhaps 

by some factor a little greater than unity if one wants to allow 
for bore friction), the equation of motion of the projectile 
then 

Then 

where 
(35) 

becomes 
II - 

f@ - 
b k II 

VP -= 

rlcr 
the constant B 

with (27), with 

rrrf, 
is the same as in (2 
the use of (26) and 

(3f) 

(35) 

Comparing 

(36) 

Dividing (36) by (311, we then find 

=2E a, (I-4,) 
-Vl!W) 

E s 
l31.l 

r-1 
If r and E are given, the parameter a0 may be calculated from (37), 

The Ratio VP, 

From (22), (26), and (29) the ratio of breech pressure p, to 
base pressure pb is given by 

(38) 



. 

Y 

w? 2 T Jo -‘W- 
= !I b’ f “,f2df 

.&t. the base of the are.iectile the gas velo _*_ _--_ --.- -_ ~~~_ ~ city f&, +’ equals 
the projectile ve1ocity.V. Use this fact, insert (26) into (ho), 
replace f by pfb , use (29), 
fo (31). o@& Flpe 

and replace A%+, BY C/S ACCOROIN~ 

The RatioF/Fb 

We next investigate the ratio of the mean pressure F to 
the base pressure % where p denotes the mean -pressure that 
should be used in the ehuation of state. In interior ballistics 
the eauation of state is used to eliminate the temperature, which 
occurs in the expression for the internal energy of the gas. To 
write down the total internal energy we need to find a mass average 
for the specific internal energy c:,T , Now 

The tota? internal energy E; is then given by 
(42) 

E; = ZI.““P($-I) Ap% 
(43) 

The val:e used for p in interior ballistic calculations is the 
average value 

P =$ 
&9) 

AU 

The appropriate mean pressure F for use in the equation of' state 
is then given by 

11 
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TEN > mm &I), ml, Plw (39) 

P=r+ $ 
Isb 

WHERE 

(53) 
i * 

(54 



’ _n !  

.,-, 

. * 

: 

,,,.- 

l 

” i 

The kinetic energy of the powder gas 
terms of%: 

(41) may also be expressed in 

t55) 

so that the total kinetic energy of' projectile and pok-der can be 
expresseti as 

W TOTAL 
=+ mV2W G, 

i- 
t5bJ 

.r"rom (56) ue see that the total kinetic energy of projectile and 
powder can be expressed as 

(57) 
hhere the effective mass me is given by 

h!z (5'8) 

Note that the correct mean pressureF for use in the equation 
of state is equal to the effective pressure J& that has to be 
assumed to act on the ef'i'ectivc mass me 
kinetic energy(Y+eV' . 

to Impart to it the total 
To shah- this note that A = me dV/dt 

gives the correct total kinetic energy (on integrz fan of AfeVdt: ). e 
i-iivitiing this 
I+ e/r = F/Fb , 

expression byArb=mdW/& 
as was to be shown. 

we find&/p,= 

Section VI: Discussion of the Above Results 

Letting* I 
ns iz C-1 

we have from (30), (37), and (54) 

s = Jo' (-yw dp (60) 

Q 6Ll 
In are required. Ge 
first show that the integral in (62) can be rcciui:ed to an ex- 
,jression involving S. Let 

* n is called the "polytropic indexI' in astrophysics. 
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By expressing 

R 

we can express the integral as 

, 
which can be integrated by parts to give 

from which 

2(Wt)a,R = -(I-&+’ + s Ic e,R 
Solution for H and division by S gives 

comparison of which with (61) gives 
#: I 

c 
I - zmt1) 

2n+3 Rb G I 
From (38) and (59) we have alSo 

C645 

‘1P 0 b = (I-g-’ 

From (64) and (65) it is clear that the calculation of all the 
practical results of the solution has now been reduced to the 
calculation of a from the given.values of E and n . 
this calculation'and its tabulation in Sectfon VII. 

We consider 

To set limits on the parameter a we proceed as follows. 
From (26) and (29) or from (38) we se? first that a0 must be real. 
Now in (38) we have dc/lr-I)= Q*l and we know that tl S !4~-0 
is a real positive number, since $> 1. 
we have ?~/pb <I 

Thus if &<o 
absurd result, since there must 

be a positive pressure diff%e ~O-~pb>O to overcome the 
inertia of the powder gas. If 40>~,Po/Pb51\-~jh-~ay be 
positive real only if n is an odd integer, any other value of n 
giving either a complex or a negative result, 
rule out the case@1 as non-physical, 

We may therefore 
since any slight change of n 

value must lead to a non-physical result, 
; examination of (60) and (61) shows 

= 0 corresponds to E = 0 and a0 = 1 to E = P. For very 
small E we have, from (60) and (61), a = a/[2(n+l)j, We obtain 

eapansion of the integrand 
in powers of a thereby 

this a0 by@ its first approximation, 
and then repl8)cing 

This second approximation 
iS &=A I.-2nt_gE 

awl.1 c Llb+l) i 

-  l 

: . -: 



).:’ 

, 

. 

._- 

1 

‘I . . 

Y  

I. 
Y’ 

’ 
: 

insertion of which into (64) gives g= 3 for c-0; in .agreement 
with (zj and (3): Insertion of the first approximstion'for a0 into 
(65) 9 which may be written 

"/s,= (~-a,)-~-' = I+ (ntr)Q,t ,..*..* , 

GIVES 

Section VII. The Methods of Calculation and,Tabulation 

Our problem now is to calculate-ae as a function of n and E 
i'rom (60) and (61) and then to devise tables by means of which a0 
and l/S can easily be found when n and E are given. To do so we 
might calculate, for a given value of n, the quantity E for a 
number of evenly spaced values of a znd then inverse interpolate. 
In this way we could,construct a taBle of a, v,ersus E and n for 
eoually spaced values of both. In doing so we should have to 
evaluate the integral S, which can be expressed as an incomplete 
beta-function, tables of which areavailanle, by Karl Pearson. (We 
diu, in fact, make preliminary computations in this way.) 

In order to explain most easily our subsequent calculations 
it is desirable at this point to discuss the tabulation'possibil- 
ities. We wish to construct tables with E and n as arguments that 
will ena'ble the user to calculate both a0 and rj. In these double- 
entry tables it is desirable that linear interpolation be per- 
;nissible with respect to both arguments E and n. It seems point- 
less however, to kbulate both a and 6, since the user of the 
tabl:s can find either one from tfle other by (64), undoubtedly 
more quickly than by interpolation in an extra aouble-entry table. 
If' the table is of a it is clear fra (64) that in calculating b 
the user will lose a?&racy by subtraction. iron: a tzole of a,. 
however, he wili be aDlc’t0 calculate a0 without loss of accuracy. 
It is settled, therefore, that we must tabulate 6 or some simple 
function thereof. The functions that come to mind on inspeci;ion 
of (44) are l/b and (Ztlt3]/$ . Since ke can probably insure the 
permissibility of linear interpolation with respect to E only by 
taking a rather small interval Tar the latter (increasing, as we 
see later, with increase in E), our problem is to find which of 
the three functions g, '/s, or[zn+3)/g will give the best inter- 
polation.possibilities for n. That is, for fixed E, which of these 
three functions is most nearly a straight line when plotted against 
n? The above mentioned preliminary computations show unrnis.takably 

. 
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that only (Zflt3)b is reasonably straight. 

We showed above that f=3 fore=0 and that a,=1 corresponds to 
e-e3 so that by (64),6-*2nt3 for e-m . 
simple table of limiting values 

The resulting 

b 
e s L/s 

(2n t3) 
/s I 

0 3 '/3 I-t 2n / 3 
* 

mt3 
I 

00, / m+3) I 

then shows that the curve of '/$ versus II is not expected to be 
straight for large values of E. To see why the curve of(Zn+3)/6 
versus n is expected to be straighter than that of 6 versus n 
for all Ewe next examine the behavior of the function(2Ht3)/g 
in the limiting cases of,small n and large Pj . This investi- 
gation leads us to the function that w-e actually tabulate. 

, 

To do so, 
quantity 

we first rewrite (60) and (61) in terms of the 

From (60), (61), and (66) we then have 

6 = z(nt~)bfl[~+b(~-~z)~~d~ 

, we haveOb&O, b=o 
(67) 

Since Og Ggl 
to E=0 

corresponding 
l'o investigate the case 

of small n “:i Er?iE thet"ir%g%d of (67) as erp{nInL:~Tthbe(l~$;$ 
and expand this exponential in a power series in n . 
is 

Now as n. approaches zero we see that b approaches the value e/,, 
Any deviation of b from the valueE/z in the logarithmic term 
will result in a quadratic (tie) contribution to the expression 
in brackets. Thus, through linear terms only 

16 
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The evaluation oi' this Integral is-given in Appendix L. 
ficiently small E i,t has the value g/3. 
From (64) and (66) we have 

Comparing (68) and ('IO), we obtain through terms linear 
2h-t3 

T- 
= I + 2h + . . . . 

E- I 

a from whi,ch 

For ~suc- 

(70) 

in n 

(II) 

cw) 

The initial slopes are thus 2J for zF 
E 

versus n and 2-G 

for S versus fl . 
E 

" . 

'- 

To investigate the case of large Vl we first note in (,67) 
that since b 5 o the integrand and thus the integral are both 
ecus1 to or greater than unity. Thus from (67) as fl+a 
f.or a fixed palue of E, we must have ~-PO . Since the integrand 
then takes on the indeterminate form \@" , we rewrite it as before 
as exp{n Infl+ b(l-p”)]), which becomes exp[nb(l-)IZ)J . 

for the limiting case b+o For h+mwe may also replace the 
outside.factor (ntl)by n , ihereby obtaining 

e = 2n b/d exp Cnb(l-)LZ)j dr 
SO WA1 b = K&>/cr , 173) 

WEE KM) IS 9 SOLUTION .o~ 
(14) 

ZKCK&fK+ cw 
Then from (70) and (74) 

* a-?+3 = I+ n _ - Zow) 
8 K(e) e 

which gives for I?--P w 
.(?61 

17 
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It is an,interesting check at this point to note thatfl- a 
corresponds to r-1 , i.e. to an expansion process governed, 

which process is 

isothermal ifyct) is constant. The equation of motion (20) * 
can then easily be ,integrated directly, with ,(75) and (77) as 
direct results. 

of which there is a very good table.* With the aid of this 
table we may calculate the values of E for evenly spaced values 
of 6 and, by inverse interpolation, 

and of 6=C2 
then obtain the values of 

c for evenly spaced values of E. 

Fra (77) the final slo e of s, versus n for large .PJ is 
clearly zero, while fran (76 P the final slope of (tnt3]/g versus 

* 
(1 

‘K - %) 
,",hacTor of the curies 

We may now summarize the initial and final 
6 versus n and(ZQ+3)/r, versus n. 

Mow J=c/3 for sufficiently small E and $=t: In 6 for 
sufficiently large E, so that the initial slope of 6 versus n 
varies with increasing E from 0 to 2 while the final slope is 
always zero. Actual plots indeed show marked curvature for the 
curves of & versus tl . 

The following table gives initial and final slopes for the 
curves I m+3)/g versus n , for a few values of E. 

wf!Tables of Probability Functionsfl, Vol. I by the WPA, sponsored 
by the,iiational Bureau of Standards (19413 

. . . i 
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Slopes of the Curves (&3)/b versus f) : 

E Initial Sldpe & Fin?al Slope 
9@ Difference 

0 0 r 6667 0.6667 0.0000 

2 0.4929 0.5402 0,0673 

' 4 0.4038 0.5086 0.1048 

6 0.3471 0.4756 0.1285' 

8 a.3070 0.45g 0 9 1445 

10 0.2768 0.43291 0.1561 

w 0.0000 0.0000 0.0000 

At E = 10 the difference of the slopes is clearly approaching a 
maximum’ value which will proDably be less than 0.2. Since the 
tables of the present report end at E = 10, we have not seen fit 
t,o extend the above table beyond that value. In any case it 
appears that ‘the curves of (ZntJ)/r versus n are very much 
straighter than those of s versus r) . 

Further investigation then showed that the quantity(2n+3)/g 
can be expressed as follows in terms of a very weakly varying 
function C,itE, n), 

(79) 

where % is the slope of (znts)/g versus r) for fl =u and 9 is 
its slope for =e . Thus 

(80) 
E 

WHERE 

19 
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$tYt'L" nKp is given by (78). 
the quantity c, 

Over tne rangesOS6 S10, 

rang=ing?rZm 6.960 to 1.065. 
differs very little from unity, 

a constant value of C, 
Such behavior is not surprising, for 

Ee(%lT.iiiY6 

will clearly reproduce the correct behavjor 
for very small U and for very large fI ; 

zn b w&J for very small n ., 
it gives . 

in agreement with (71) and 
n 

I -‘- ia - x for very large n in agree-merit with (76). Indeed 
replacement of C, by unity in (74) gives values ofI/S not worse 

-> .a. 

than one part in 1000 for any ,of the values of l and r) that we 
consider. Such accuracy would probably meet the practical require- 
ments of interior ballistics, but it appears worth while to'obtain 
somewhat better accuracy, since this Pidduck-Kent solution has con- 2 
siderable mathematical interest as the limiting solution of a 
classical problem, in fluid mechaYics. 

F~CWTI (70)' and (79) 
c, = 9-I 

($9- 4)~ 
WHERE 

Q 
1 1 = -. 

c -ii 

- Z(n4 
- 

dl e 1 

* 
(82) 

(83) 

The final C,-table of this report has a range on n from 0.5 to 5, 
corresponding to values of the effective 8 ranging fram the value 
1.2 (approximately the value for ballistite,, but uncorrected for 
heat loss) up to the value 3, which would allow for enormous heat 
loss. 

We found b by solution of (67), which, for an integer value 
of n gives E as a polynomial in b . 
solve's quadratic equation. 

E'o~Wlwe had simply to 
For r\ =2, 3, 4, and 5 we tabulated 

e versus b at eoual intervals and inverse interpolated to 
find .b versus' & at-equal intervals. ,ln obtaining a double- 
entry ,table of C, versus e and; n we founu the following argument 
intervals satisfactory for linear interpolation: 

c = o(o.z)l(l)do AND n = 1/z, I&3,4,5 

To obtain reasonable smoothness in this table we f’ouna it necessary, 
because of the subtractions in (82) and (83), to calculate b to 
high accuracy3t, especially for the smaller values of' E This 
circumstance, conversely, 
signif'icant figures in the 

z.ccounts for the fact that very'few 
c,- table will give ys to high accuracy. 

i 

* This necessity rendered useless the Pearson tables of the incom- 
plete beta-function. 
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For n='/z we had to calculate, according to (d7);values.of 

the integral 

1 

In obtaining tables of b and C, in this case we found it con- 
venient first to tabulate 15 versus bUz , at equal intervals : 
of b"L., and then to inverse intkrpolate for the latter rather. 
than for b . 

We did not have to compute b or C, for any other values of 
n except for the purpose of,checking b$ich we did very simply 
as f;rl.lows. ihe integral rmG 
recurslion 'formula 

~o[~+b[~-~~J~n (67) satisfies the 

I = 
ntl 

I 

2n+ [ 
ZIntMtb)&, -f ), 1 (85) kW 

We cho.se several 
culated &, FM fl= 

values of b anti for esch of these values cal- 
'/2,%4/a,l/t, -0 312 --by means of (84) and 

successive applications of (85). Then by (67) we easily computed 
the value of 6 for each of these cases and, fram (701, the 
accurate value of r/F . Tc check the adequacy of the unit n-interval 
oi' theC,-table we first interpolated linearly in the latter (or 
used the..graphs or contour map given later) e We then interpolated 
in the-tables of Oc an? :.' 

tB 
to find the values of the latter 

quantities corresponcing 0 each e and then inserted the valuek 
of n, 4c,f9, and C, into (79) to find '/S Comparisons 
with the accurate values of '/s showed that the er&r was never 

rester than.that arising from the use of tabular values of tT . 
See Section VIII for a discussion of errors of the tables.) 

For the table of d(E)we computed anchor values directly from 
the formula 

** For the derivation see Appendix C. 
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deducible directly from (69) and (‘80). These anchor values were 
e = o(o. \)2.~(0.2)S.~lo.d 10,O. Direct interpolation then 
gave values of d for the final tabular arguments: E =0(0,05) 1.0 
(0.1) 4.0. (0.2j 10.0. 

(C)'we first used (78), with the aid of the 
'- 

For the table of 
&PA "Tables of Probab Functions", to make a table of & for 
c= 0.18 (.0.02), 1.30. Inverse interpolation then gave tables of 
p and thus of 4&P= ‘/~2- */& for the same anchor values of e 

-- 2 

as for oc Division gave a table ofp for those same anchor 
values and diiect interpolation then gave the table of 76 for the 
final tabular arguments: es O(O.1) 2.6 (0.2) 5.0 (0.25) 10.0. 

L ’ 

Section VIII. Discussion of the Ta'bles and their Accuracy 

and 
Appendix A gives,the- fi-nal'working---tables forti(~),/~E), 
G wn) Appendix ~,gives a set of graphs of c, versus 

,j, I:>;> 45 FOR n = ix I, e 3,4, 5 a contour map of C, as a function 
of 6 and 0 P, And's table'o,f values+ read from the graphs and 
used.in constructing the contour map. 

The values of d' and',& are given to four decimal places and 
are correct,;in all cases to four dedmal places, the original anchor 
values, of d andqhaving been calculated to seven decimal places. 
The values of C, are given to three decimal places, rounded down 
from four decimal places. The possible error in a tabular value of 
H or of +9 is thus not greater than 0,5 in the fourth decimal, i.e. 
0.00005. Examination of the differences shows that linear inter- 
polation is permissible throughout either table. With a maximum 
possible. errof of absolute value 0.00005 in either of two neighbor- 

it is clear that the permissible linear interpolation 
J 

ing -entries, 
cannot give an error of magnitude greater than 0.00005 either forti 
or for 

fa 
Experience with the C, table (which is not subdivided 

quite ineiy enough to make linear interpolation always rigorously 
permissible) and with the C, graphs and contour map shows that the 
possible error is one unit in the third decimal place, i.e. 0.001. 

we now ask the question: how much error can be produced in '1s 
by these possible errors O~=0.00045,a~~o.o~o~~,~~~~~,~~~ocr/? 
We have 

2n+3 = I+4l-l 
s CZ?-1 I 

* This table is included to facilitate possible reproduction of this 
report in other forms. 
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A word of warning is appropriate here. In evaluating the fraction 
(wc,prr~/wm) it would be entirely incorrect to keep only 
three decimals in the numerator.and three in-the denominator, simply 

1~ + . . because C, is -given orlly to three decimals. One can best see this 
point by considering the case E=Z,n=) 
and C,=. 

for which p=: 1.1364 
1.061; Fe compute the fraction(l+crlBn)/(l+c,9) 

.p I. 1.070 for C,=1.061 and 1.068 for C,= 1. Thus rounding CI to zi:o 
decimal places leaves unaffecteti the second decimal place of the 

! fraction, so that we are justified in keeping two more decimal 
places in the result'than were used for C, 
elaborate 

Instead of using. 
* however, 

rules for the,proper number oi' significant figures 
one will probably find it srmpler to use more place: than 

1 
are necessary or valid in calculating (79) arid simply round down. 
at the end to the proper number of figures for b/g that are in- 
dicated by the considerations about to be given. 

. 

Error in 'I& from Error in H Alone 

Let Ad I 'Js) be the error in yg arising from insertion into (79) 
of a value of d in error by ati i -From (79) we have 

. : 

'L ,. 

Placing C, =I and /? =jI.cM- (it; value for E= 10) we find that the 
coefficient has its largest value for 
of tl that occur in the tables). 

(0~5 (for the range of values 
This value being 0.565, we find 

for the largest possible error in '/sthat can arise fran the possible 
error 0.00005 in 0~ , the value 

= 0,0000~, 
or three units in the fifth decimal place of l/S. 

Error in '4% from Error in # Alone I 
Let Aptys) be the error in '/g ari;;;fn;ro; insertion into (79) 
of a value of p in error by 0 

P I = 
have 

I in (79) we then 
c 

The largest value of nf()+~)r’(2R+3)c’ for our range of values of 

> ,‘I ins 
occurs at n=5 and has the value 0.32. 
Y3 forEtO. 

The largest value of H 
For a possible error 0 = 0.00005 we 

thus find B 
c 

O/Q 
: ’ . +m* = ~0.32q~)~o.oOoo5) =o,ooooJ 9 



or one unit in the fifth decimal place of '/g, 

Error in '/s from hrror in CI Alone 

Let A,,(l/g) ‘be the wror in )/$'ariring from insertion into 
(79) of a value of C, in error‘byac~ . From (79) we have .? 

A,,('/g) = =+-')nt~ AC, , 
(l+fl)zctnt3) 

on differentiating (79) and putting C,~S . The largest value of 
d(/-I)is about O.l6,occu~~4ng for E-10, and the largest value 
for the functionn211+n)'~~~.s)" is about 0.064, occuring at tI% 
2.3. On insertion of these values and the maximum possible val'ue 
AC,= 0.001, we find 

(qh" 
AC 'mX = 0.0000l 

or one unit in the fifth'decimal place of '/6. 

i 

Thus in the practical use of hq. (79) and the tables for Oc, 
and C, we may expect a maximum possible error ofJ+I+I ~5 uf i'ts 
in the fifth decimal place of ‘/S l Now the smallest 'W fOF 
our ranges of G and h , ocCMXiP& for E=lO anti U--5, is about 
0.23, so that the maximum possible error is about 5 parts in 
23,000 or 1 part in 4600. Roughly, then, the maximum possible 
error is about 1 part in 5000 in calculating I/$ by (79) and the 
tables. It would be ouite feasible to reduce this possible error 
to a much lower value by using finer intervals and more decimals 
in the tables of Oc and p,and still retain the desirable feature 
of permissible linear interpolation. With the use of such bulkier 
tables of s and # one could reduce ,the possible error to that 
arising from error in C, alone, or about 1 part in 25,L)OO. We 
have not felt it worth while to cio so, however. 

Pqs_s-ible Error in ao 

From (64.) we have 
I= 2tl+3 
=o s 

+ zcn+r) 
e 

so that 

A&, = -a,Z(zn+3~a ( f, (91) 
From (90) 3rd (91, 

4% 

QO C 

zw3 
-=- zn+3 

s- 
+ aln+l) 

3 J 
a(; 

E 

C92) * i 

24 



We have seen that by far the largest part Of the possible error 
in !IS mises from,the possible error in N and that the.largest 
possible error in !6clue to error in 4 occurs at h=5. 
an upper limit to~~&/401 

To obtain 
0Ve-therefore insert into (92) the 

._i value g~=$ and, obviously, the largest value of e 
occur5 in our tables. 

viz, 10; that 

G= 
Using the value (ln+S)/g =' 3.034 for 

10 and R=s and the value lA(vr)l~~~r 0.0000‘5 we find 

I a4%o1 = 0,‘000l5 
. The maximum possible error in & is thus only 1.5 parts in 

10,000 or.1 part in 6700. ,It is clear that the maximum possible. 

i 
absolute error also corresponds to the same values of E and 0 , 
for which bsO.2363, so that \auOJtiS = 0.000035. 

1 

. 

Possible Error inFo/Fb - 

The Pidduck-Lent value of the ratio-of breech pressure to 
base pressure is given by 

Ip (r-a,) 
-n-l 

(65) 
'I'hus 

Oil inSt:PtiIlg the values 4Q,=d.O00035, Q,=O.2362, and n= 5 
ve find I 

The maximum possible error that can arise in calculating the 
pidduckYKent value for this pressure ratio from our tables is- 
thus 2.7 parts in 10,000 or 1 part in 3700. 

possible Error inji/g, OR w/W, ..-. _...--._ _ ,. 
The Pidduck-Kent value for the ratio of space mean pressure 

to base pressure, or f'or the ratio of the total kinetic energy 01 
the powder plus projectile to that of the projectile, is given by 

WC-J, 

WP 
= t-H-g 

/ 
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The greatest possible error ti either ratio is thus C times the 
greatest possible error in l/S or 0.00005 E . For f5=10 and n=5 
the fractional error thus becomes 

- = 0.0002 

The greutest possible error that can arise in calculating the 
Pidduck-Kent value ror this ratlo 0om our taoles is thus I part 
in 5000. 

Gtie 
John P. Vlnti 

*w 
Sidney Kravitz 



TAHLES FOB 'Mb PIDDUCK-KENT SOLUTIUN 

; ='J& 1.+&n (.L$#?e)J 

where n = l/(&- 1) and d,f , and’=, are given in the tables uhich 
follow below. 

TABLE I 

In the following table Oc is given as a Xunction of E ror the 
i'ollowing values: 6 = 0(.05)1(.1)4(.2)10. It is found 
following formula: d '- c $q{~n tb+e +e Jq)] - 

The first forward differences of the function are 
the third .column the t ird .column mark mark 

.6298 -56 
-55 
-53 

;ec 1 a,. Linear. i 
45 M 

i:: ,562l 

1.2 
1-3 
1.4 
15 
1:6 

s-44 
: 5;77 

1.7 .5112 
1.8 -5049 

;:7" 
$82 
.4145+ 

;:; 
.4109 
04073 

lterpo 
4, 

-81 
-78 
-75 
-73 
-70 

--67 
-65 
-63 
-61 
-59 

3 

1;; 

$ 
-46 
-44 

T 
-41 
-40 

+%- 
-37 
-36 
-36 
-35 

tion is permissible. 
e 1 ' ,238 A,' 

- -67 

l 3971 4 a3906 2’ 
l 3844 -5; 

4-8 .3785- -57 
77T 153 56 

-51 
-3568 
a3519 r$ 

-30 
-29 

.2850+ -28 

.2822 -27 

.2795- -27 

.2768 
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TAtiLE II 

In the following table / is given as a function of E for 
the following values: C = 0(,1)2.6(,2)5(.25)10. 

p+[+-$] where k is the solution of E =zKe 
K e,le-"r'dy 

1 
The first forward differences of the function are given in 

the column marked A,. Linear interpolation is permissible, 

1.0000 
1.0067, 

::5 1.0136 
x.0205- 

0.4 1.0274 

0.5 1.0344 
0.6 1.0413 

Z 1.0483 1.0553 
0.9 1.0622 

1.0 1,0691 
1.1 1.0760 

;:; Ez 
1.4 1: 0965t 

1.5 1.1033 
1.6 1.1100 

Ei 1.1167 1.1233 
1.9 1.1299 

2.0 I.1364 
5; 1.1430 

2.3 
2.4 

A 

lj6 

t 

135 
134 
132 

131 
129 
128 
126 

126 
124 
123 
121 

121 
120 
118 
118 

116 
116 
115 
113 

‘i. 
i 

t  



In the following table c,. is given as. a f'unction of E and n 
for all cmbknations of the fklowing values: E = 0(.2)1(1)10; 
n = y2,1(1)5,’ 

0.0 
.2 
. 
. 
. 8 

1 
2 

iz 

2 
7 

G 

10 

1.000 
1.016 
11% 8 
1:045 

1.051 
1.059 
1.053 
1.042 

1.029 
1.015 
1.000 

.986 

.p73 

.960 

1 

1.000 
1.016 
1.02 

8 
k8346 

1.051 
1.061 
1.057 
1.047 

1.036 
1.023 
1.010 

*997 
l 985 

.973 

2 

1,000 
1.016 

. 
it 858 
11046 

1.052 
1.063 
i-g; 

. 

1.042 
1.031 
1.019 
1.008 

-997 

.986 

3, 

1.000 
1.016 
1.029 
1.039 
1.047 
1.052 

EZf; 
1:055 

1.046 
l-035 
1.024 
1.013 
1.002 

.992 

4. 

1.000 
1.016 
1.029 
1.039 
1,047 

';*z; 
11064 
1.057 

1.048 
1.037 
1.027 
1.016 
1.0ii6 

-996 

5 

1.000 
1.016 
1.030 
1.039 
1.047 
1.053 

xz: 
1:058 

1.049 
1.039 
1.029 
1.018 
1.008 

l 398 

The above table is represented graphically in Graph I of 
contains a contour 

the tabular values 
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APPENDIX B 

GRAPHICAL REPRESENTATION OF THE TABLE FOR CL 

,i- 
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TAULE IV 

In Graph II on the preceding page n is plotted as a function 
0:' E for constant values uf c I' In the following table the values 
used to plot these curves are tabulated with E given as a function 
of' c, and n. 

5 
1.000 
1.010 
1.020 
1.030 
1.04,o 

1.050 
1. 0.60 

3 . 

1.065 
1.063 
1.060 
1.050 

1.040 
1,030 
I.020 
1.010 

l.iiJOO 

:;2: 
.970 

m 

0.00 
0.11 
0.25 
z-g . 

0.97 
--v- 
---- 
---- 

---- 
WI-- 
---v 
3.29 

4.15 
4-92 
5.45 
6.34 

7.00 
7.72 
8.45 
9.20 

.l 

0.00 
.O.ll 
0.25 
0.42 
0.65 

0.97 
1.69 
---- 
---- 

---- 
----, 
2.50 
3.73 

4.60 
5-44 
6.23 
6.98 

7.75 
8.57 
9.40 
---- 

n 

2 

0.00 
0.11 
0.25 
0.42 
0.64 

em-- 

2.45 
;:;g 

8.70 
9.65 
---- 
---- 

3 

0.00 
0.11 
0.25 
0.41 
0.64 

z2 
1.75 
q--4 

---- 
2.95 
3.43 
4 . 55 

2:;; 

7.37 
8.33 

,j , ;<z 
---- 
---- 
----- 

4 

0.00 
0.11 
025 
0.40 
0.61 

9.91 
1.40 
1.63 
2.00 

2.73 

;$I; 
4:75 

5.73 
6.70 
7.65 
5, 43 

3.53 
---- 
---- 
---- 

5 

0.00 
0.11 
0.25 
0.40 
0.60 

0.90. 
1.35 
1.60 
1.92 

7.98 
3.35 
3.75 
4.87 

5.89 
6.85 

z l 

9.80 
---- 
---- 
---- 

f 
i 
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APPEIWIX C 

EVALUATION OF' CERTAIN 1NTE;GRALS 

(The auxiliary variables used in this appendix have no 
connect'ioti wi%h the tiotaiion of the rest qf,,the report.) 

1. Evaluation of J-s o ('jql + ;(I-f)] dy ' ': 

On putting I+ 



1’ 
I n+l-(l+b)In = -b n x2&c ' I; '<. 

= l/2 i dp+b(l-x"fl 
:. - 

and I 1 
n+l = 2nt3 c 

2(n+l)(l+b)I, + 1 3 

We therefore have 

Q2 = (l/4) [3(ltb)Il,g + 13 

35 



A 

a 

a 
0 

b 

b 

C 

5 
% 
'i 
f 

f' 

fb 
,H 

In 
5 

k 

m 

me 
n 

P 

pb 

pe 

PO 

uniform cross-sectional area 

a Parameter 

a'parameter characteristic of the Pidtiuck-Kent 

a constant 

a,/(l-a,) 
initial mass of the powder 

a function of E and n 

specific heat at constant volume 

total internal energy’ 

a function of x alone 

abbreviation for f'(x) 

abbreviation for f(xb) 

probability integral 

a solution of & z 

mass of the projectile 

effective mass 

the polytropic index, l/(8 -I) 

pressure of the gas 

pressure at the base of the projectile 

effective pressure 

breech pressure 

Page where 
symbol first 

appears 

IO 
: i 

9 

solu’tion IO 

3 ,’ .i 

16 

3 i. 
I9 
6 

II 

7 

6 

Jo i. 

J8 

21 

/6 

17 
3 

u 

I3 

5 



I t 

v 

wc 

wP 

space mean pressure behind the projectile 
I 

r- 
I Z(Fl+l) 

Cd< g-y-- 
1 

t, Jo’ c I- 40p’,“p%p 

the ga.s constant per unit mass 

? Jd (I- ao/&‘)” +.L 

absolute temperature of the powder gas 

time 

3 

20 

13 
6 

JO 

6 

5 

velocity of the projectile 3 

kinetic energy of the powder plus poxder gas 3 

kinetic energy of the projectile 4 

wtotal 
total kinetic energy of projectile and powder 

W the variable cf -I)-’ 

W 
0 

x 

Xb 

Y 

the variable w’$ 

initial distance of any gas particle from the breech 

initial distance from the breech to the base of the 
projectile 

distance from the breech at time t of a particle whose 
breech distance was initially x, 

reduced breech distance of a particle 

initial slope of (2n + 3)/6 versus n. 

ratio (finai slope/initial slope) of (Zn + 3)/6 
versus n 

effective ratio of specific heats 

ratio of specific heats of the gas 

P3 L 

6 

8 

5 

JO 

5 

7 

19 

19 

s 5 S/R ‘L 

, ;. e charge-projectile mass ratio 3 
. 

7 specific covolume of the powder g&s 6 
. ..” I I m 
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P dummy variable io 

f aensity of the gas ,5 

P 

11 . . 
AV average density II 

/” initial density of the gas in the specia? solution 5 ;.i . . 
;, Ip 143 ,i 

4QNDY functions of time alone 4 f 
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